
1.  Introduction
Conceptual hydrological models are useful tools to study and simulate catchment-scale processes and behav-
ior. Determining a suitable conceptual model structure for a given catchment, however, remains difficult given 
the variability of processes, data, and intended objectives that characterize catchment model applications 
(Beven,  2000). Large model intercomparison studies showed that no single model is able to outperform the 
others in a broad range of catchments, but rather that relative model performance is catchment specific (Duan 
et al., 2006; Knoben et al., 2020). Even when model applications are limited to streamflow simulations at daily 
or subdaily time resolution, the range of appropriate model structures is diverse. Following the principle of parsi-
mony, as exemplified in the “top-down” approach (Sivapalan et al., 2003), models as simple as a single reservoir 
were found to be appropriate in some catchments, whereas more complex models were necessary in others (Bai 
et al., 2009; Kavetski & Fenicia, 2011; Kirchner, 2009).

In recognition of model specificity, alternative development strategies have been pursued for modeling stream-
flow time series. One strategy has been to develop models that represent the best compromise over a wide 
range of applications. The pioneering study by Jakeman and Hornberger (1993) explored model identification in 
seven catchments covering a wide range of scales and climatic conditions and determined that a three-element 
model structure with two reservoirs in parallel driven by a rainfall excess element was the most commonly 
identified configuration. A more systematic approach to model identification is represented by the data-based 
mechanistic approach, whose application to multiple catchments confirmed such three-element structures as the 
most commonly identified model configuration (Young, 2003). Conceptual models such as the GR4J (Perrin 
et al., 2003) and HBV (Lindstrom et al., 1997) can be regarded as emblematic examples of the search for a general 

Abstract  Daily streamflow dynamics can be accurately simulated by conceptual models as simple as 
a single bucket in some catchments, while they require more complex configurations in other catchments. 
However, without resorting to calibration, anticipating where and why a given model structure may be 
appropriate remains difficult. In this work, we explored the feasibility of relating suitable model structures 
to the climate and streamflow characteristics of 508 catchments in Brazil. Specifically, we tested four model 
structures using up to three reservoirs, where each reservoir is intended to represent a catchment function: the 
rainfall-runoff threshold, the fast, and the slow hydrograph response. We hypothesized a relationship between 
suitable model structures and hydrological signatures of aridity (IA) and baseflow index (IB). Our results show 
that different classes of signatures resulted in distinct patterns of model performance. Wet catchments (IA < 0.9) 
with low baseflow (IB < 0.4) were the easiest to model, with a single-reservoir model presenting a relatively 
good performance. In the case of low baseflow, adding a rainfall-runoff threshold reservoir resulted in better 
performance than adding a slow response reservoir, whereas in the case of high baseflow (IB < 0.6) the opposite 
occurred. In the case of low baseflow, the inclusion of a slow response reservoir helped the simulation of dry 
catchments (IA < 1.1), but not of wet ones, which we attributed to the impact of permeability in dry catchments. 
These results indicate a path toward model structure identification from streamflow signatures and potentially 
from landscape features.
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purpose conceptual model as they have been subject to a process of continuous refinement over time. Interest-
ingly, these models are also generally consistent with such three-element model structures.

“Best compromise” models have important practical advantages since they can, for example, facilitate operational 
use (Le Moine et al., 2007). However, even if such models have better performance than others on average, they 
may not be the best choice in each individual catchment. For example, such fixed models (e.g., HBV) may have 
advanced to reflect a certain type of hydrology (e.g., Sweden), but not global variability in hydrologic systems. 
Therefore, an alternative strategy has been to develop approaches that enable model identification in each specific 
catchment. The most basic approach to pursue this objective has been to develop a set of a priori defined model 
structures, which are subsequently evaluated on a set of catchments (e.g., Bai et al., 2009; Coxon et al., 2014; 
Jakeman & Hornberger,  1993; van Esse et  al.,  2013). More advanced approaches include model selection in 
an optimization setup, thus enabling direct model structure identification (e.g., Seiller et  al.,  2017; Spieler 
et al., 2020; Young, 2003). Such model identification approaches have generally confirmed that the streamflow 
response of different catchments may be best described by models that differ in terms of structure and parameters.

If streamflow dynamics in different catchments may be best represented by distinct models, the question is 
whether it is possible to relate suitable model structures to a given catchment directly based on data, therefore 
without resorting to calibration. Such an ability would contribute to the representation of intercatchment differ-
ences and advance catchment classification, hence furthering capacity to sort and group the variability of catch-
ment systems (McDonnell & Woods, 2004; Wagener et al., 2007). In particular, a major objective of catchment 
classification is to predict the catchment “functions” of “partition” of incoming flows, such as those relating 
to precipitation in different flow paths, “storage” of water in different catchment compartments, and “release” 
as evaporation or outflow (Wagener et al., 2007). The representation of these functions through model compo-
nents designed for that purpose is a common objective of process-based hydrological models. Hence, building a 
mapping between catchment data and suitable models is a way to characterize hydrological diversity. This process 
does not necessarily imply a unique mapping between catchments and models, but rather that certain catchment 
classes may be associated with distinct model classes (Coxon et al., 2014).

If hydrological models represent the landscape properties that control hydrological processes (Freeze, 1974), one 
can expect that suitable model structures can be directly associated with such properties. Although this connec-
tion appeared feasible for small headwater catchments (Fenicia et al., 2014; Kavetski & Fenicia, 2011) or distrib-
uted models (Fenicia et al., 2016; Samaniego et al., 2010; Singh et al., 2012), it has been difficult to establish for 
lumped conceptual models and large catchments. For example, while investigating the differences in performance 
of 36 lumped conceptual models in 559 catchments across the United States, Knoben et al. (2020) found “no 
clear relationships between the catchments where any model performs well and descriptors of those catchments’ 
geology, topography, soil, and vegetation characteristics.” Similarly, in evaluating the performance of 12 model 
structures in 99 catchments in Germany, Ley et  al.  (2016) did not find a strong connection between relative 
model performance and catchment characteristics. Massmann (2020), on a model comparison study in 574 US 
catchments, found it difficult to link relative model performance to landscape attributes (topography  or  catch-
ment area). These results indicate that relationships between catchment characteristics and model structures or 
parameters are easier to establish on a smaller rather than on a larger scale (Singh et al., 2012).

Alternatively, by taking into account that hydrological models are typically intended to transform climate input 
into streamflow output, one may seek a connection between suitable model structure and the characteristics 
or signatures of such input–output variables. The possible relationship between suitable model structure and 
hydrograph characteristics was already noted by Jakeman and Hornberger  (1993). While searching for a best 
compromise model structure, Jakeman and Hornberger (1993) observed that the optimal model was catchment 
dependent and that, for example, a slow reservoir was not needed if baseflow was negligible. A correspondence 
between model complexity and baseflow index was found in other studies, suggesting more complex models 
for catchments with higher baseflow (Coxon et al., 2014; Massmann, 2020). In determining the minimum level 
of model complexity required to predict runoff in New Zealand catchments, Atkinson et al. (2002) established 
a hypothetical relationship between model complexity, timescale, and climate characteristics, suggesting that 
more complex models are needed for finer time resolutions and drier catchments. The fact that wetter catch-
ments are easier to model than drier catchments is generally consistent with model intercomparison studies (e.g., 
Coxon  et al., 2014; Massmann, 2020; Parajka et al., 2013; Poncelet et al., 2017). To a certain extent, the ease with 
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which wetter and therefore more dynamic catchments can be modeled also 
reflects the properties of widely used objective functions like Nash–Sutcliffe 
efficiency (Knoben et al., 2019).

Although such previous studies provided useful indications on how signatures 
can potentially affect identifiable model complexity, they did not establish 
predictive relationships with regard to such interrelationships. In this study, 
we framed a set of hypotheses on the relationship between signatures and 
identifiable model complexity, which are verified using a large-sample data 
set. Specifically, we investigated whether signatures of baseflow and aridity 
help identify suitable model structures in different catchments, leveraging the 
recently developed CAMELS-BR data set (Chagas et al., 2020), containing a 
large sample of catchments in Brazil. Our exploration of model alternatives 
included four model structures which complement the three-element model 
identified by Jakeman and Hornberger  (1993) with simpler model alterna-
tives using one or two elements. Our hypothesis was that the relative perfor-
mance of such models can be related to catchment signatures and therefore 
help identify different dominant processes in different catchments.

Our specific objectives are to do the following:

•   �Assess when different hydrological processes should be added to the 
model structure.

•   �Understand the correspondence between model structures and hydrologi-
cal signatures.

This paper is structured as follows. Section 2 describes the study area and 
data. Section  3 describes the methodology, including model structure and 
hydrological signatures selection, model evaluation, and the key hypothe-
sis. Section 4 presents the main results, including catchment classification 
and analysis of streamflow simulations for each model structure and catch-
ment class. Section 5 discusses the results according to the key hypothesis 
presented in Section 3.4. Section 6 summarizes the main conclusions of the 
study.

2.  Study Area and Data
We used 508 catchments from the CAMELS-BR data set (Figure 1), which contains hydrometeorological time 
series and catchment attributes for 897 catchments in Brazil (Chagas et  al.,  2020). We excluded catchments 
larger than 10,000 km 2 to avoid strong climate variability within a single catchment. In addition, we considered 
only catchments in which less than 20% of the area is covered by urban use to limit the effects of anthropogenic 
changes.

The hydrometeorological time series includes 20 years of observations ranging from 1 January 1985 to 31 Decem-
ber 2004 at daily resolution. The observed variables include streamflow, precipitation, and potential evaporation 
(averaged for each catchment). Precipitation gridded data are obtained from Xavier et al. (2016) and potential 
evaporation is obtained from the Global Land Evaporation Amsterdam Model (GLEAM), as described in Chagas 
et al. (2020).

The study area encompasses a wide range of climate, hydrology, and landscape properties. It can be divided 
into three major regions: the semiarid, the humid tropics, and the humid subtropics. None of such regions have 
dominant snow-related processes (Chagas et al., 2020). The semiarid region includes most of the northeastern 
area of Brazil. Mean annual precipitation is 750 mm and mean annual potential evaporation is 1,200 mm. Streams 
in the northern portion of the semiarid region are ephemeral and highly responsive to rainfall events. They have 
low subsurface porosity, permeability, and baseflow indices (on average 0.35), which suggests a predominance of 
quick flow pathways. On the other hand, streams in the southwestern semiarid region are perennial and have low 

Figure 1.  Brazil and the 508 stream gauges included in this study. Gray 
lines indicate countries. Black lines indicate the regions of Brazil: north (N), 
northeast (NE), central-west (CW), southeast (SE), and south (S). Blue lines 
indicate the river drainage.
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responsiveness to rainfall events. Therein, they have high subsurface porosity, permeability, and baseflow indices 
(on average 0.74), suggesting a predominance of slow flow pathways.

The humid tropics and subtropics have contrasting hydrological regimes. The humid tropical catchments are 
located mostly in central-western and southeastern Brazil. Mean annual precipitation and potential evaporation 
are 1,500 and 1,025  mm, respectively. Precipitation is highly seasonal due to the South American Monsoon 
System (Marengo et al., 2012), which leads to wet summers and dry winters. Streamflow responds slowly to rain-
fall events as compared to the humid subtropics and is sustained by high baseflow rates during the dry winters. 
The soils are highly permeable and commonly more than 25 m deep (Figure S1). Such characteristics indicate the 
potential for a high water storage capacity, which gets replenished during the wet season and released slowly in 
the dry season. In the humid subtropics, by contrast, precipitation and streamflow regimes are uniform through-
out the year. The subtropical catchments are located mostly in southern Brazil, with mean annual precipitation 
and potential evaporation of 1,700 and 890 mm, respectively. Streamflow is highly responsive to rainfall, with 
considerable fluctuations between low and high flow events. Compared with the humid tropics, baseflow rates 
are low, soils are not as deep (less than 10 m deep) and have high clay content (Figure S1), indicating lower water 
storage capacity.

3.  Methodology
In the process of investigating a mapping between hydrological signatures and conceptual model structures, the 
following key steps were envisaged.

1.	 �Selection of conceptual model structures.
2.	 �Selection of hydrological signatures.
3.	 �Model evaluation.
4.	 �Development of key hypotheses.

These steps are detailed in the following sections.

3.1.  Selection of Conceptual Model Structures

In this study, we aimed to select a minimal set of model structures, covering the range of complexities and corre-
sponding processes that are typically identifiable using daily streamflow data in nonsnow-dominated catchments. 
As discussed in Section 1, a “best compromise” model structure that adequately models streamflow response 
in many catchments is constituted by three key elements, represented by a reservoir that partitions precipitation 
between evaporation and effective rainfall, followed by two reservoirs operating in parallel, representing the fast 
and the slow hydrograph response. These three elements are often associated with distinct catchment compart-
ments and corresponding processes. The first reservoir in the cascade of processes is typically associated with 
the unsaturated zone and characterizes the nonlinearity in the partitioning of precipitation between evapora-
tion and effective rainfall, depending on the reservoir storage. The two parallel reservoirs are associated with 
the (sub)surface and groundwater compartments and are represented as linear (Jakeman & Hornberger, 1993; 
Young, 2003) or nonlinear (e.g., in HBV) storage–discharge processes. Many widely used conceptual models 
such as GR4J or HBV can be assimilated to such a structure, which also turns out to be one of the most commonly 
identified using various model identification strategies in several catchments (e.g., Jakeman & Hornberger, 1993; 
Young, 2003).

We here hypothesized that this model structure is rather inclusive in terms of processes and that simpler struc-
tures can be found suitable, depending on the characteristics of catchment forcings and responses. Thus, we 
complemented this model using simpler versions of it, using either one or two reservoirs. In principle, the set of 
models could have been more inclusive, for example, by introducing additional elements such as lag functions 
or reservoirs (e.g., Fenicia et al., 2014). However, we assumed that these model structures were representative 
of the processes that are most easily identified using streamflow data in a simple calibration setup. Moreover, 
large-sample studies are unavoidably confronted with the need to balance “depth” with “breadth,” which results 
in some compromises in the number of feasible model experiments (Gupta et al., 2014).
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In total, we considered four model structures, which are schematically represented in Figure 2. For ease of refer-
encing, the four model structures are named MF (fast reservoir), MUF (unsaturated and fast reservoir), MFS (fast 
and slow reservoir), and MUFS (unsaturated, fast, and slow reservoir), as shown in Figure 2. The most complex 
model, MUFS, exemplifies the three-element model recalled above. Precipitation enters the “unsaturated reser-
voir” (UR), which determines the “effective rainfall,” hence the portion of precipitation that eventually becomes 
streamflow. Effective rainfall is then partitioned between a quick flow and a slow flow component, determined 
by the “fast reservoir” (FR) and the “slow reservoir” (SR), respectively. The reservoirs UR, FR, and SR are 
consistent with the “rainfall excess,” “quick flow,” and “slow flow” elements of the most common configuration 
identified by Jakeman and Hornberger (1993), and with the “soil water storage,” “quick flow pathway,” and “slow 
flow pathway” of Young (2003), as well as with the structure of conceptual models such as GR4J and HBV. The 
simplest model, MF (upper left panel of Figure 2), is represented by a single power law reservoir, simulating both 
catchment streamflow and evaporation. This model is intended to represent catchments as “simple dynamical 
systems,” hence where streamflow is determined by their total water storage (Kirchner, 2009). A single-reservoir 
model can be regarded as a lower bound in terms of typical complexity in conceptual modeling. But experience 
has shown that even such a simple model can provide accurate streamflow simulations in some catchments 
(Kavetski & Fenicia, 2011; Kirchner, 2009).

The models MUF and MFS are two-reservoir models intended to represent two different pathways from MF to 
MUFS. Compared to MUFS, MUF contains the reservoirs UR and FR but lacks SR. Hence, effective precipitation 
from UR is routed through a single reservoir. Whereas in MUFS, the reservoir FR is linear, in MUF, FR is a power 
law reservoir in order to provide this reservoir with some flexibility to reproduce both fast and slow hydrograph 
dynamics. MFS, compared to MUFS, contains the reservoirs FR and SR but lacks UR. Hence, MFS has a fast and a 
slow release component but lacks a component designed to estimate effective rainfall. Similar to MF, evaporation 
is taken directly from FR.

The model structures were generated using a MATLAB implementation of the SUPERFLEX framework (Fenicia 
et  al.,  2011; Kavetski & Fenicia,  2011). The water balance equations and the constitutive relationships are 
presented in Tables 1 and 2, respectively. The models were implemented with a second-order accurate explicit 
method with adaptive time stepping (Schoups et al., 2010), with absolute and relative tolerances fixed at 10 −3, as 
in David et al. (2019).

Figure 2.  Model structures used. FR indicates fast reservoir, UR indicates unsaturated zone reservoir, and SR indicates slow 
reservoir. Green pointers indicate the comparisons when adding the UR, blue pointers indicate the comparisons when adding 
the SR. The parameters are displayed in red. Ce is the evaporation parameter, SuMax is the unsaturated reservoir capacity, β is 
the unsaturated reservoir exponent, D is the proportion of flow directed to the slow reservoir, α is the fast reservoir exponent, 
Kf is the fast reservoir coefficient, and Ks is the slow reservoir coefficient.
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3.2.  Selection of Hydrological Signatures

As discussed in Section 1, previous work established that signatures of arid-
ity and baseflow correlate with identifiable model complexity. In particular, 
arid catchments appear to require more complex models than wet catchments 
(Atkinson et al., 2002; Massmann, 2020), and catchments with high baseflow 
typically need more complex models than catchments with low baseflow 
(Coxon et al., 2014; Massmann, 2020). Such behavior lends itself to process-
based interpretation, which is an important prerequisite when attempting to 
hypothesize a relationship between signatures and model structures. In particu-
lar, the effect of aridity on identifiable model complexity can be explained by 
taking into consideration that the more arid the catchment, the more variable 
the hydrological regime, potentially uncovering storage–discharge nonlinear-
ities or thresholds that may remain hidden when catchments are permanently 
in a wet state. The effect of baseflow on model complexity is often related to 
the presence of deep groundwater, whose contribution to the hydrograph may 
require an independent model representation. Such considerations underlie 
the hypotheses about the mapping between model structure and signatures, 
which are illustrated in Section 3.4. The aridity and baseflow signatures used 
in this study are defined as follows:

Aridity index. 𝐴𝐴 𝐴𝐴A , which is defined as the ratio of long-term average potential 
evapotranspiration to long-term average precipitation:

𝐼𝐼A =

𝑁𝑁T
∑

𝑡𝑡=1

𝐸𝐸Pot,𝑡𝑡

𝑁𝑁T
∑

𝑡𝑡=1

𝑃𝑃𝑡𝑡

� (1)

where 𝐴𝐴 𝐴𝐴Pot indicates the potential evaporation at an individual catchment, 𝐴𝐴 𝐴𝐴  is precipitation, 𝐴𝐴 𝐴𝐴 is the time index, 
and 𝐴𝐴 𝐴𝐴T is the number of observations.

Baseflow index. 𝐴𝐴 𝐴𝐴B , which is defined as

𝐼𝐼B =

𝑁𝑁T
∑

𝑡𝑡=1

𝑄𝑄
(b)

𝑡𝑡

𝑁𝑁T
∑

𝑡𝑡=1

𝑄𝑄𝑡𝑡

� (2)

where 𝐴𝐴 𝐴𝐴 stands for streamflow, and 𝐴𝐴 𝐴𝐴
(b) for baseflow (other variables are 

defined above). We use a popular filter for calculating baseflow as proposed 
by Lyne and Hollick (1979):

𝑄𝑄
(b)

𝑡𝑡
= min

(

𝑄𝑄𝑡𝑡, 𝜗𝜗b𝑄𝑄
(b)

𝑡𝑡−1
+

1 − 𝜗𝜗b

2
(𝑄𝑄𝑡𝑡−1 +𝑄𝑄𝑡𝑡)

)

� (3)

As recommended by Nathan and Mcmahon (1990) for daily streamflow, the 
filtering parameter 𝐴𝐴 𝐴𝐴b was set to 0.925, and three passes (forward, backward, 
and forward) of the filter were used.

We note that different baseflow separation methods exist (e.g., Carlotto & 
Chaffe, 2019; Eckhardt, 2008). Although such methods may result in differ-
ent baseflow index values, they should provide a similar ranking between 
catchments (i.e., if catchment A has a lower baseflow index than catchment 
B, then the same ranking will be maintained with different methods). As we 

Water balance equations MF MUF MFS MUFS

𝐴𝐴
d𝑆𝑆f

d𝑡𝑡
= 𝑃𝑃f −𝑄𝑄f − 𝐸𝐸 ✓ – ✓ –

𝐴𝐴
d𝑆𝑆f

d𝑡𝑡
= 𝑃𝑃f −𝑄𝑄f

– ✓ – ✓

𝐴𝐴
d𝑆𝑆u

d𝑡𝑡
= 𝑃𝑃 −𝑄𝑄u − 𝐸𝐸 – ✓ – ✓

𝐴𝐴
d𝑆𝑆s

d𝑡𝑡
= 𝑃𝑃s −𝑄𝑄s

– – ✓ ✓

𝐴𝐴 𝐴𝐴 = 𝑃𝑃f ✓ – – –

𝐴𝐴 𝐴𝐴u = 𝑃𝑃f
– ✓ – –

𝐴𝐴 𝐴𝐴f = 𝑄𝑄 ✓ ✓ – –

𝐴𝐴 𝐴𝐴 = 𝑃𝑃f + 𝑃𝑃s
– – ✓ –

𝐴𝐴 𝐴𝐴f +𝑄𝑄s = 𝑄𝑄 – – ✓ ✓

𝐴𝐴 𝐴𝐴u = 𝑃𝑃f + 𝑃𝑃s
– – – ✓

Note. S represents the conceptual storage value, P represents the precipitation, 
Q represents the discharge, and E represents the evapotranspiration. The 
subscripts f, u, and s represent fast, unsaturated, and slow, respectively.

Table 1 
Water Balance Equations of the Models Used in the Experiments (✓ and 
“–” Indicate Presence or Absence, Respectively)

Constitutive functions MF MUF MFS MUFS

𝐴𝐴 𝐴𝐴f = 𝑘𝑘f𝑆𝑆f
𝛼𝛼 ✓ ✓ – –

𝐴𝐴 𝐴𝐴f = 𝑘𝑘f𝑆𝑆f – – ✓ ✓

𝐴𝐴 𝐴𝐴 = 𝐶𝐶e𝐸𝐸p

(

1 − 𝑒𝑒
−

𝑆𝑆f
𝑚𝑚

) ✓ – ✓ –

�u = �u∕�uMax – ✓ ✓ ✓

�u = ��u
� – ✓ ✓ ✓

� = �e�p

(

�u(1+�)
�u +�

)

– ✓ – ✓

𝐴𝐴 𝐴𝐴𝑠𝑠 = 𝐷𝐷𝐷𝐷 – – ✓ ✓

𝐴𝐴 𝐴𝐴s = 𝑘𝑘s𝑆𝑆s
– – ✓ ✓

Table 2 
Constitutive Functions of the Models Used in the Experiments (✓ and “–” 
Indicate Presence or Absence, Respectively)
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focused on relative catchment differences in this work, we expected that our results are not particularly sensitive 
to the choice of baseflow separation methods or their parameterization.

3.3.  Model Evaluation

3.3.1.  Calibration–Validation Approach

We adopted a “temporal split sample” validation strategy (Klemeš, 1986), based on subdividing the time series 
of the observed streamflow into two periods. In particular, we partitioned the 20-year observation period into two 
consecutive 10-year periods: period 1, from 1 January 1985 to 31 December 1994, and period 2, from 1 January 
1995 to 31 December 2004. Each period was then expanded by prepending five additional years of model inputs, 
which were used for model warm-up. The calibration–validation was repeated in each period, and the corre-
sponding streamflow time series for calibration or validation were concatenated. In this way, the calibration and 
validation time series spanned the (same) full period, which facilitated their comparison. All results are presented 
in validation, unless otherwise indicated.

Model calibration was conducted using the Nash and Sutcliffe efficiency (Nash & Sutcliffe, 1970) of the square 
root of the streamflow as an objective function:

𝐹𝐹NS = 1 −

𝑁𝑁T
∑

𝑡𝑡=1

(

𝑄𝑄
𝜆𝜆

sim,𝑡𝑡
−𝑄𝑄

𝜆𝜆

obs,𝑡𝑡

)2

𝑁𝑁T
∑

𝑡𝑡=1

(

𝑄𝑄
𝜆𝜆

obs,𝑡𝑡
− ave

(

𝐐𝐐𝜆𝜆

obs,1∶𝑁𝑁T

))2
� (4)

where 𝐴𝐴 sim stands for simulated, 𝐴𝐴 obs for observed, ave indicates the average, and 𝐴𝐴 𝐴𝐴 is an exponent. The exponent 𝐴𝐴 𝐴𝐴 
was fixed at 0.5 to mitigate the heteroscedasticity in model residuals, which is otherwise typically present when 

𝐴𝐴 𝐴𝐴 = 1 (McInerney et al., 2017).

The Shuffled Complex Evolution (SCE-UA; Duan et al., 1992, 1993) was used as the calibration algorithm for 
the inference of the models’ parameters. The SCE-UA has some parameters that must be configured by the user. 
For this study, we used 7,000 iterations, 5 complexes, and 1 simplex. Each catchment took, on average, 20 min 
for one calibration. Considering that four models were applied on two periods in 508 catchments, a total of 4,064 
calibrations were carried out.

Given the already high computational burden, no further sensitivity or uncertainty analyses were carried out. 
Such analyses may contribute to a more comprehensive assessment of which model components are necessary 
and which ones are superfluous in each individual catchment (e.g., Bai et al., 2009). Here, such insights were 
inferred from model comparisons, as illustrated in the following section, using the rationale, typical in the appli-
cation of a top-down framework (Sivapalan et  al.,  2003), that when additional complexity does not result in 
improved performance it is unnecessary since the usefulness of such resultant data is poor.

3.3.2.  Analysis of Streamflow Simulations

Model performance was assessed using model validation results. The first assessment of model performance 
used the 𝐴𝐴 𝐴𝐴NS objective function defined in Equation 4. For subsequent analyses, we removed those catchments for 
which all models performed poorly which was defined here by 𝐴𝐴 𝐴𝐴NS lower than the specified threshold fixed at 0.5. 
This low model performance may have been a consequence of data errors or model inadequacy. In either case, it 
would have been problematic to associate a model structure to a given catchment if the model performance had 
been exceedingly low. Thus, the subsequent analyses were not considered meaningful if at least one of the four 
model structures did not perform adequately.

While 𝐴𝐴 𝐴𝐴NS provides an absolute performance, in order to compare models, we were also interested in the rela-
tive performance between models. For this purpose, we calculated a relative performance indicator, which was 
defined as follows:
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Δ𝐹𝐹
(M𝑖𝑖𝑖M𝑗𝑗)

NS
=

(

1 − 𝐹𝐹
(M𝑖𝑖)

NS

)

−
(

1 − 𝐹𝐹
(M𝑗𝑗)

NS

)

1 − 𝐹𝐹
(M𝑖𝑖)

NS

� (5)

where M stands for model, 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are model indices (F, fast reservoir; UF, unsaturated and fast reservoir; FS, fast 
and slow reservoir; UFS, unsaturated, fast, and slow reservoir). Hence, for example, 𝐴𝐴 𝐴𝐴

(MF)

NS
 would correspond to 

the 𝐴𝐴 𝐴𝐴NS of model MF in the validation period.

The indicator 𝐴𝐴 Δ𝐹𝐹
(M𝑖𝑖𝑖M𝑗𝑗)

NS
 was calculated for pairs of models that differ for the addition of a single reservoir, with the 

index 𝐴𝐴 𝐴𝐴 referring to the model without the reservoir, and with the index 𝐴𝐴 𝐴𝐴 referring to the model with the reservoir. 
The indicator 𝐴𝐴 Δ𝐹𝐹

(M𝑖𝑖𝑖M𝑗𝑗)

NS
 was therefore calculated for the following model pairs: MF–MUF, MF–MFS, MUF–MUFS, 

and MFS–MUFS. A positive value of 𝐴𝐴 Δ𝐹𝐹
(M𝑖𝑖𝑖M𝑗𝑗)

NS
 indicates that adding a reservoir improves model performance. The 

denominator was used to give greater weight to the improvement in performance the higher the 𝐴𝐴 𝐴𝐴NS values. For 
example, an improvement from 𝐴𝐴 𝐴𝐴

(M𝑖𝑖)

NS
  = 0.45 to 𝐴𝐴 𝐴𝐴

(M𝑗𝑗)

NS
  = 0.50 (i.e., 𝐴𝐴 Δ𝐹𝐹

(M𝑖𝑖𝑖M𝑗𝑗)

NS
  = 0.09) has a smaller 𝐴𝐴 Δ𝐹𝐹

(M𝑖𝑖𝑖M𝑗𝑗)

NS
 than 

an improvement from 𝐴𝐴 𝐴𝐴
(M𝑖𝑖)

NS
  = 0.75 to 𝐴𝐴 𝐴𝐴

(M𝑗𝑗)

NS
  = 0.80 (i.e., 𝐴𝐴 Δ𝐹𝐹

(M𝑖𝑖𝑖M𝑗𝑗)

NS
  = 0.20).

3.3.3.  Analysis of Model Parameters and States

In order to gain further insights into model behavior in relation to the different catchments, we considered the 
most complex model MUFS and performed the following analyses.

•	 �Analysis of selected model parameters. We analyzed the inferred values of the partitioning parameter D in 
relation to the observed signatures. This parameter divides the flow between (sub)superficial flow (fast reser-
voir) and baseflow (slow reservoir). The higher its value, the greater the proportion of water flows to the slow 
reservoir.

•	 �Analysis of selected states. We analyzed the inferred states of two reservoirs, UR and SR, according to the 
water balances in Table 1. Specifically, we considered the difference 𝐴𝐴 Δ𝑆𝑆u and 𝐴𝐴 Δ𝑆𝑆s between the maximum and 
the minimum storage for each calibration period in UR and SR, respectively. Larger values of 𝐴𝐴 Δ𝑆𝑆 indicate a 
larger accumulation of water in the reservoir.

These diagnostics on model parameters and states were selected because of considered informative of model 
behavior. In particular, besides being potentially informative on the correspondence of model parameters to 
signatures—and, therefore, on whether model components correspond to their intended process representation—
these diagnostics may also indicate excessive or misused model complexity and therefore complement the previ-
ous model comparisons. For example, the calibrated value of the parameter D may be such that it effectively 
excludes a reservoir; or a relatively small 𝐴𝐴 Δ𝑆𝑆 value may indicate a relatively constant reservoir state and there-
fore that a reservoir element may be superfluous. The employment of these diagnostics in the model evaluation 
process is described in the following section.

3.4.  Development of Key Hypotheses

Our selection of model structures and signatures is motivated by the following hypotheses:

�1.	� The three-element model structure MUFS—which, as discussed in Section 3.1, is broadly consistent with the 
“best compromise” models identified in previous studies—is representative of the main catchment functions 
of partition, storage, and release. However, not all of these functions may be present in all catchments, mean-
ing that simpler models may work comparatively well. In particular

a.	� The SR model component, which is intended to simulate groundwater processes, is not needed in catch-
ments with low baseflow.

b.	� The UR component, which is intended to model the nonlinear partitioning of precipitation between effec-
tive rainfall and evaporation depending on catchment storage, is not needed in very wet catchments as they 
should be close to saturation.



Water Resources Research

DAVID ET AL.

10.1029/2021WR030619

9 of 20

Based on the considerations above, we expected that a simpler model should work well in wet catchments with 
low baseflow and that more complex models are needed in the other scenarios.

In terms of the analyses of model parameters and states, we expected that

�2.	� Catchments with a high baseflow index have a greater percentage of flow into the slow reservoir, resulting in 
larger D values.

�3.	� Larger values of 𝐴𝐴 Δ𝑆𝑆u indicate a larger variation of water in the unsaturated soil, which we expected to happen 
in arid or highly seasonal catchments. In wet catchments, instead, this reservoir should always be close to 
saturation.

�4.	� Larger values of 𝐴𝐴 Δ𝑆𝑆s indicate a larger variation of water in the groundwater storage, which is expected in 
catchments with a higher baseflow index.

Besides relating relative model performance to signatures, we also expected that a posteriori, it is possible to 
relate relative model performance to landscape properties. In particular:

�5.	� We expected that relative model performance can be related to properties such as soil type, soil depth, and 
topography, which in turn affect the signatures of streamflow response.

For testing these hypotheses, we used a baseflow index to classify catchments into three classes:

•	 �Low baseflow (LIB), when 𝐴𝐴 𝐴𝐴B  < 𝐴𝐴 𝐴𝐴B,Low .
•	 �Medium baseflow (MIB), when 𝐴𝐴 𝐴𝐴B,Low  ≤ 𝐴𝐴 𝐴𝐴B  < 𝐴𝐴 𝐴𝐴B,High .
•	 �High baseflow (HIB), when 𝐴𝐴 𝐴𝐴B  ≥ 𝐴𝐴 𝐴𝐴B,High ,

where the following threshold values were used: 𝐴𝐴 𝐴𝐴B,Low  = 0.40, and 𝐴𝐴 𝐴𝐴B,High  = 0.60. The motivation for these thresh-
olds was to have an intermediate class (MIB) where the partitioning of flow would represent an equal partitioning 
of flow between baseflow and quick flow (i.e., around 𝐴𝐴 𝐴𝐴B  = 0.50), and two extreme classes with catchments 
characterized by mostly quick flow (LIB) or mostly low flow (HIB).

Additionally, we classified the catchments into three classes of aridity index, using the following approach:

•	 �Low aridity (LIA), when 𝐴𝐴 𝐴𝐴A  < 𝐴𝐴 𝐴𝐴A,Low .
•	 �Medium aridity (MIA), when 𝐴𝐴 𝐴𝐴A,Low  ≤ 𝐴𝐴 𝐴𝐴A  < 𝐴𝐴 𝐴𝐴A,High .
•	 �High aridity (HIA), when 𝐴𝐴 𝐴𝐴A  ≥ 𝐴𝐴 𝐴𝐴A,High ,

where the following threshold values are used: 𝐴𝐴 𝐴𝐴A,Low  = 0.90, and 𝐴𝐴 𝐴𝐴A,High  = 1.10. The motivation for these thresh-
olds was to separate catchments that are energy limited (LIA) from those that are water limited (HIA) through an 
intermediate class (MIA) that contains the separation threshold (𝐴𝐴 𝐴𝐴A,Low  = 1). We argue that such hypotheses and 
classifications using baseflow and aridity are pertinent because, as discussed in Section 2, hydrological process 
variability in the study area is closely related to these signatures.

The combination of three classes of baseflow (𝐴𝐴 𝐴𝐴B ) and aridity (𝐴𝐴 𝐴𝐴A ) indices leads to nine signature classes. These 
nine classes are used to broadly distinguish catchment response behavior.

4.  Results
4.1.  Catchment Classes

Figure 3 maps the catchments based their signatures classification, where panel a indicates the three classes 
associated with baseflow index (𝐴𝐴 𝐴𝐴B ), panel b shows the three classes associated with the aridity index, and panel 
c shows the nine classes associated with the combination of these two signatures. While 𝐴𝐴 𝐴𝐴B and 𝐴𝐴 𝐴𝐴A had a clear 
regional pattern, the nine classes combining 𝐴𝐴 𝐴𝐴B and 𝐴𝐴 𝐴𝐴A were more mixed. The aridity index was lower in the 
southern and northern regions of the country, increasing toward the northeast. The latter region was characterized 
by the greatest seasonality and the lowest annual precipitation volume in the country. The baseflow index values 
were higher in the southwest and inland parts of the northeastern region (the transition from the semiarid to the 
Amazon). The catchments with low aridity (classes LIA–LIB, LIA–MIB and LIA–HIB) were located in the 
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south, southwest, central-west, and northern regions. The LIA–LIB class was located mainly in the south, while 
the LIA–MIB and LIA–HIB classes were distributed in the other regions. The classes with medium 𝐴𝐴 𝐴𝐴A (MIA–
LIB, MIA–MIB, and MIA–HIB) were in the inland northeast and in the upper part of the southeast region, which 
are in climate transition zones. The high 𝐴𝐴 𝐴𝐴A classes were mainly in the northeastern region. The HIA–HIB was in 
the interior part, while HIA–MIB and HIA–HIB classes were closer to the coast.

4.2.  Analysis of Streamflow Simulations

Figure 4 maps the validation performance of the four model structures in terms of Nash and Sutcliffe efficiency 
(𝐴𝐴 𝐴𝐴NS ). This figure illustrates the following points:

•	 �Model performance generally increased from MF to MUFS, which we attributed to the fact that more complex 
models are more flexible in terms of ability to adapt to different catchment dynamics.

•	 �However, there were catchments where model MF performed relatively well (FNS > 0.75), which illustrated 
that even such a simple model could provide good performance in some catchments. These catchments were 
located in the southern region of Brazil and had IA values between 0.48 and 0.63 and IB between 0.42 and 0.67.

•	 �There were few catchments where none of the models provided a sufficiently good performance (here speci-
fied as 𝐴𝐴 𝐴𝐴NS  < 0.5), which left us with 466 catchments (from the initial sample of 508 catchments) for further 
analyses.

Figure 5 shows the analysis of model performance for the nine catchment classes based on the combination of 
baseflow and aridity indices. Looking at the extreme catchment classes (all low–high combinations, exclud-
ing middle ranges, hence LIA–LIB, LIA–HIB, HIA–LIB, and HIA–HIB), it can be observed that these classes 
behave differently in terms of relative model performance.

•	 �Model MF achieved the best average performance in the class LIA–LIB, meaning that this class was the easiest 
to model. In LIB (hence LIA–LIB, HIA–LIB), MUF and MUFS were both better than MF and MFS, which means 
that adding UR was more effective than adding SR.

•	 �In HIB (hence LIA–HIB, HIA–HIB), MFS and MUFS were both better than MF and MUF, which means that 
adding SR was more effective than adding UR.

•	 �In LIA–LIB, there was no benefit in adding a groundwater reservoir, whereas in HIA–LIB there was a benefit 
in adding a groundwater reservoir.

•	 �HIA–LIB exhibited a high percentage of failure for all four model structures. For the most complex one, MUFS, 
41% of the catchments presented FNS < 0.5.

•	 �The percentage of failure for model structures without SR increased from classes with low 𝐴𝐴 𝐴𝐴B to classes with 
high 𝐴𝐴 𝐴𝐴B .

Figure 3.  Spatial variability of hydrological signatures and definition of catchment classes. (a) Aridity index (𝐴𝐴 𝐴𝐴A ). (b) Baseflow index (𝐴𝐴 𝐴𝐴B ). (c) Catchments classes 
according to 𝐴𝐴 𝐴𝐴A and 𝐴𝐴 𝐴𝐴B . LIA, low 𝐴𝐴 𝐴𝐴A ; MIA, medium 𝐴𝐴 𝐴𝐴A ; HIA, high 𝐴𝐴 𝐴𝐴A ; LIB, low 𝐴𝐴 𝐴𝐴B ; MIB, medium 𝐴𝐴 𝐴𝐴B ; and HIB, high 𝐴𝐴 𝐴𝐴B . Gray lines indicate the regions of Brazil.
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Figure 6 shows the spatial distribution of the differential improvement in going from a simpler to a more complex 
structure, defined by 𝐴𝐴 Δ𝐹𝐹

(M𝑖𝑖𝑖M𝑗𝑗)

NS
 (Equation 5). Comparing with Figures 3, Figure 6 shows that

•	 �The inclusion of UR did not improve performance in catchments with high 𝐴𝐴 𝐴𝐴B (in the southeast and northeast 
interior regions), especially when we compared MF with MUF. Regions with smaller 𝐴𝐴 𝐴𝐴B (south and coastal part 
of the northeast) showed higher improvement.

•	 �In catchments with low 𝐴𝐴 𝐴𝐴B (southern region), the inclusion of SR degraded the performance or just slightly 
improved it. On the other hand, for catchments with high 𝐴𝐴 𝐴𝐴B , the inclusion of the SR improved the performance 
of both simpler and more complex models.

Figure 7 shows the differential improvement, 𝐴𝐴 Δ𝐹𝐹
(M𝑖𝑖𝑖M𝑗𝑗)

NS
 , stratified for the nine catchment classes. This figure 

complements Figure 6 which, by providing absolute model performances, does not show whether the improve-
ment is consistent across all catchments. Figure 7 leads to the following results:

•	 �In LIA–LIB, adding UR generally led to an improvement, whereas adding SR could lead to both an improve-
ment and a deterioration (mostly deterioration in the case of 𝐴𝐴 Δ𝐹𝐹

(MUF ,MUFS)
NS

 ).
•	 �In HIB (hence LIA–HIB, MIA–HIB, and HIA–HIB), while the inclusion of UR and SR reservoirs improved 

the simulation, clearly the impact of the slow reservoir was higher than that of the inclusion of the unsaturated 
zone reservoir.

•	 �In HIA, the inclusion of the SR became more important than that of UR when the baseflow was dominant. On 
the other hand, the inclusion of UR led to an improvement in the majority of the catchments.

Figure 4.  Spatial distribution of Nash and Sutcliffe efficiency (FNS) values in the validations of each of the four model 
structures evaluated. Gray lines indicate the regions of Brazil.
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4.3.  Analysis of Hydrographs on Selected Catchments

As it is difficult to assess how much model simulations differ from 𝐴𝐴 𝐴𝐴NS values alone, some emblematic exam-
ples of differences in model simulations for the four more extreme catchment classes are provided hereafter. 
Figure 8 exemplifies the hydrographs simulated by the four model structures in the four catchments that belong 
to the four extreme categories LIA–LIB (Figure 8a), LIA–HIB (Figure 8b), HIA–LIB (Figure 8c), and HIA–HIB 
(Figure 8d):

•	 �In catchment 83345000 (the number is the gauge station code adopted in the Brazilian national data set) in the 
Hydrological Region South Atlantic, belonging to the LIA–LIB class, all models were broadly able to follow 
the hydrograph dynamics. Hence, in this catchment, even the single-reservoir model MF provided a relatively 
good performance, as also apparent form Figure 8, where the simulations of the four models appear similar. A 
closer examination indicates that MF and MFS performed similarly to each other, and MUF and MUFS performed 
similarly as well. As these pairs of models differed from the addition of a groundwater reservoir, this similar-
ity illustrates how in this catchment class the addition of a groundwater reservoir did not result in an appre-
ciable improvement in model simulations. The addition of UR, instead, appeared to be marginally beneficial.

•	 �In catchment 6095000 (in the Hydrological Region Paraná), belonging to the LIA–HIB class, it can be 
observed that both MF and MUF suffered from similar deficiencies, by not being able to capture both the fast 
and the slow hydrograph dynamics. MFS and MUFS, instead, could match the fast and slow hydrograph modes 
and had similar behavior. In this catchment, therefore, the addition of SR was essential, whereas the addition 
of UR did not appear to have an influence.

•	 �In catchment 3524000 (in the Hydrological Region Eastern Atlantic), belonging to the HIA–LIB class, it is 
clearly visible how MF was not suitable, with a negative 𝐴𝐴 𝐴𝐴NS . Although MFS, which includes a groundwater 
reservoir, had a much better performance than MF, MUF was the simplest model that provided adequate perfor-
mance. The addition of a groundwater reservoir, exemplified by MUFS, led to a similar behavior. Therefore, in 
this catchment, the addition of UR appeared to be essential, whereas the addition of SR had a minor influence.

•	 �In catchment 33205000 (in the Hydrological Region Eastern Atlantic), belonging to the HIA–HIB class, one 
can see how one needs the full range of model complexity. Only model MUFS can match the full range of 
hydrograph responses, whereas comparatively, all other models demonstrate strong deficiencies.

Figure 5.  Model performance in the validation of each model structure for the nine catchment classes. LIA, low 𝐴𝐴 𝐴𝐴A ; MIA, 
medium 𝐴𝐴 𝐴𝐴A ; HIA, high 𝐴𝐴 𝐴𝐴A ; LIB, low 𝐴𝐴 𝐴𝐴B ; MIB, medium 𝐴𝐴 𝐴𝐴B ; and HIB, high 𝐴𝐴 𝐴𝐴B .
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The hydrographs of these catchments exemplify similar behavior to the other catchments belonging to the same 
classes.

4.4.  Analysis of Model Parameters and States

The values of the parameter D of MUFS for each class of catchments (top panel), and for the two calibration peri-
ods, can be seen in Figure 9. The higher its value, the greater proportion of water flows to the slow reservoir. The 
parameter D value was higher for catchments with a high baseflow index. This result indicates that the model 
represented as intended the division of the flow into fast and slow components, which confirmed the importance 
of adding the slow reservoir for catchments with high 𝐴𝐴 𝐴𝐴B . It is also noted that for the two periods the distribution 
of the parameter values was similar, that is, they were not sensitive to the calibration period. Thus, a period of 
10 years in this case was sufficiently long to capture hydrological temporal variability. Independently of catch-
ment dryness, there was a strong relationship between parameter D value and baseflow index (Figure 9b). As this 
parameter can be directly compared with 𝐴𝐴 𝐴𝐴B , this is a strong indication that the model’s internal dynamics were 
consistent with their intended process representation.

Figure 10 presents the difference between the maximum and the minimum inferred states of UR and SR accord-
ing to the nine catchments classes for one calibration period (both periods presented similar results). For the UR, 
we can see that

Figure 6.  Spatial distribution of the four differential improvements analyzed, 𝐴𝐴 Δ𝐹𝐹
(M𝑖𝑖𝑖M𝑗𝑗)

NS
 , stratified for the nine catchment 

classes. LIA, low 𝐴𝐴 𝐴𝐴A ; MIA, medium 𝐴𝐴 𝐴𝐴A ; HIA, high 𝐴𝐴 𝐴𝐴A ; LIB, low 𝐴𝐴 𝐴𝐴B ; MIB, medium 𝐴𝐴 𝐴𝐴B ; and HIB, high 𝐴𝐴 𝐴𝐴B . Gray lines indicate 
the regions of Brazil.
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•	 �HIA classes (hence HIA–LIB, HIA–MIB, and HIA–HIB) had the largest UR storages. These drier catchments 
usually presented a nonlinear response and therefore the model had to store more water in UR in order to 
represent this nonlinearity.

•	 �LIA–LIB presented the smallest UR storage values. As shown before, these catchments were the easiest to 
model, benefitting the least from extra model elements compared to other classes.

•	 �HIB classes (LIA–HIB, MIA–HIB, and HIA–HIB) presented larger storage values than classes with smaller 
𝐴𝐴 𝐴𝐴B and similar 𝐴𝐴 𝐴𝐴A values.

As for the SR storages, we can see that HIB classes (hence LIA–HIB, MIA–HIB, and HIA–HIB) presented larger 
UR storage when comparing with the classes with the same 𝐴𝐴 𝐴𝐴A range.

5.  Discussion
Our model validation results showed a connection between the performance of the four model structures and the 
two hydrological signatures of aridity index (𝐴𝐴 𝐴𝐴A ) and baseflow index (𝐴𝐴 𝐴𝐴B ). These results are broadly consistent 
with the hypotheses defined in Section 3.4, as detailed below.

The easiest catchments to model were those with low 𝐴𝐴 𝐴𝐴A and low 𝐴𝐴 𝐴𝐴B (hypothesis 1a and 1b). In these catchments, 
the simplest model MF presented FNS higher than 0.5 in 74.5% of the catchments. This result can be interpreted 
by considering the landscape characteristics of these catchments, their perceived dominant processes, and their 
model representation (hypothesis 5). These catchments are mainly located in the southern region, they are highly 
responsive to rainfall and are characterized by the highest percentages of clay and lowest soil depth (Figure S1). 
High clay content indicates limited infiltration and therefore small groundwater flow, whereas limited soil depth 
associated with relatively wet conditions indicates small fluctuations in storage dynamics in the unsaturated 
zone. We have explored the relationship using correlation analysis and did not find a significant correlation 
between baseflow index values and soil characteristics. Nevertheless, these characteristics could explain why 

Figure 7.  Differential improvements analyzed, 𝐴𝐴 Δ𝐹𝐹
(M𝑖𝑖𝑖M𝑗𝑗)

NS
 , stratified for the nine catchment classes. LIA, low 𝐴𝐴 𝐴𝐴A ; MIA, 

medium 𝐴𝐴 𝐴𝐴A ; HIA, high 𝐴𝐴 𝐴𝐴A ; LIB, low 𝐴𝐴 𝐴𝐴B ; MIB, medium 𝐴𝐴 𝐴𝐴B ; and HIB, high 𝐴𝐴 𝐴𝐴B .
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the groundwater and unsaturated model compartments are superfluous in these catchments, and a single bucket 
model is relatively well performing. This result generalizes other studies, where single bucket models were found 
to perform well in wet catchments with low baseflow, such as Maimai (Kavetski & Fenicia, 2011) and Plynlimon 
(Kirchner, 2009).

Dry catchments, instead, were generally harder to model. For some dry catchments, especially with low 𝐴𝐴 𝐴𝐴B , all 
models performances were considered insufficient (FNS < 0.5). This result is consistent with other studies (e.g., 
Coxon et al., 2014; Massmann, 2020; Parajka et al., 2013; Poncelet et al., 2017) that found that catchment aridity 
is one of the main characteristics that affect model performance. It can be hypothesized that dry catchments are 

Figure 8.  Observed and simulated hydrographs (validation using Nash–Sutcliff efficiency) of four catchments that belong 
to the four extreme categories. (a) Low aridity and low baseflow catchment (ID 83345000, in the Hydrological Region South 
Atlantic). (b) Low aridity and high baseflow catchment (ID 60950000, in the Hydrological Region Paraná). (c) High aridity 
and low baseflow catchment (ID 35240000, in the Hydrological Region Eastern Atlantic). (d) High aridity and high baseflow 
catchment (ID 33205000, in the Hydrological Region Eastern Atlantic).
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more difficult to simulate because of a more complex water balance than wetter catchments. The impact of evap-
otranspiration and changes in groundwater is reduced in wetter catchments, facilitating the representation of the 
water balance by hydrological models (Poncelet et al., 2017). Those catchments may also have long periods with 
flow close to zero or zero, which makes modeling especially difficult (e.g., McInerney et al., 2019).

The inclusion of the unsaturated zone reservoir improved the model performance in dry catchments (hypothe-
sis 1b), which we interpret in terms of a highly nonlinear response compared with wet catchments, that is, the 
water balance depends less on precipitation and more on evapotranspiration and underground storage. The UR 
is therefore important to represent this nonlinearity. This reservoir appears to be more important for catchments 
with low 𝐴𝐴 𝐴𝐴B (south and coast of the northeast), as we can see in Figure 6, with a mean FNS for models with UR 
above the threshold of 0.50 and models without with a mean FNS below 0.50. The inclusion of the UR does not 
improve performance in catchments with high 𝐴𝐴 𝐴𝐴B (in the southeast and northeast inland regions), especially when 
we compare MF with MUF, with both structures with a 100% failure for HIA–HIB. This result is also evident in 
HIB catchments, where the inclusion of UR did not improve the time and shape of the hydrographs (Figure 8). 
This result may be explained by taking into account that in such high 𝐴𝐴 𝐴𝐴B catchments, groundwater processes are 
more dominant than soil related processes.

Figure 9.  (a) Distribution of parameter D values (i.e., the proportion of flow directed to the slow reservoir) for the nine 
catchment classes. Period 1 (light gray) corresponds to the calibration between 1985 and 1994 and period 2 (dark gray) to the 
calibration from 1995 to 2004. (b) Scatterplot between baseflow index and the parameter D. The black line indicates a 1:1 
line. LIA, low 𝐴𝐴 𝐴𝐴A ; MIA, medium 𝐴𝐴 𝐴𝐴A ; HIA, high 𝐴𝐴 𝐴𝐴A ; LIB, low 𝐴𝐴 𝐴𝐴B ; MIB, medium 𝐴𝐴 𝐴𝐴B ; and HIB, high 𝐴𝐴 𝐴𝐴B .
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The inclusion of the slow reservoir improved the performance of both dry and wet catchments with baseflow indi-
ces greater than 0.60 (HIB classes, hypothesis 1a). For HIB classes, the number of catchments with FNS greater 
than 0.50 changed from 40% for MUF to 87% for MUFS. This indicates that when a process becomes increasingly 
dominant in the total streamflow, its respective model representation becomes more necessary. The percentage 
of failure decreased from 54.6% with MUF to 6.25% with MUFS for LIA–HIB catchments. The regions with larger 
improvements were the ones with higher 𝐴𝐴 𝐴𝐴B and greater soil depth (hypothesis 5), that is, those in the southwest 
and inland of the northeastern region (Figure 6). Catchments with greater soil depth probably exhibit a greater 
contribution from the baseflow to the total runoff, making it necessary to add the slow reservoir. For the LIB 
classes (𝐴𝐴 𝐴𝐴B smaller than 0.40) the performance worsened with SR (as seen in Figure 7), especially in the southern 
region of Brazil, which had the smallest values of 𝐴𝐴 𝐴𝐴B and soil depth. This is an example where increased model 
complexity can degrade model performance in validation. This result reinforces the hypothesis that the slow 
reservoir becomes superfluous where the processes it is intended to represent are not dominant. Results similar 
to ours, where parallel models performed better in catchments with dominant groundwater flows, are consistent 
with previous studies (e.g., van Esse et al., 2013), although in the UK it has been shown that this is not always 
the case (Lee et al., 2005). High values of 𝐴𝐴 𝐴𝐴B have been related to lower streamflow responses to changes in 
precipitation (e.g., Sawicz et al., 2011), suggesting the need for an independent reservoir with a slow and constant 
flow. Small values of 𝐴𝐴 𝐴𝐴B may indicate catchments with rapid response (Addor et al., 2017) and greater streamflow 
variability, reducing the need for the slow reservoir. Nevertheless, in HIA–LIB, there is a benefit in adding a 
groundwater reservoir, which could be attributed to the impact of permeability in dry catchments.

The model structures without SR, hence MF and MUF, performed worse in areas with a higher percentage of 
sand (comparing Figure 4 and Figure S1). We hypothesize that this result is due to those catchments having 
higher soil permeability with larger groundwater flow, with the inclusion of a slow reservoir being necessary 

Figure 10.  Difference between the maximum and the minimum inferred states of (a) the unsaturated zone reservoir (UR) and 
of (b) the slow reservoir (SR) according to the nine catchment classes. LIA, low 𝐴𝐴 𝐴𝐴A ; MIA, medium 𝐴𝐴 𝐴𝐴A ; HIA, high 𝐴𝐴 𝐴𝐴A ; LIB, 
low 𝐴𝐴 𝐴𝐴B ; MIB, medium 𝐴𝐴 𝐴𝐴B ; and HIB, high 𝐴𝐴 𝐴𝐴B .
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to model its behavior (hypothesis 5). On the other hand, these models performed better in catchments with high 
clay content, which can be explained by low soil permeability and therefore limited groundwater flow. Although 
such a model performance pattern may lead to the hypothesis of a connection between sand/clay percentages and 
baseflow index, our independent analyses could not determine such a relationship, indicating that the connection 
of patterns of model performance and landscape properties is more difficult to establish than the one with stream-
flow signatures.

The analysis of the partitioning parameter D of MUFS showed that this parameter is strongly related to 𝐴𝐴 𝐴𝐴B (Figure 9). 
This result shows that this model represents, as intended, the partitioning of the flow into fast and slow compo-
nents, lending confidence in the hypothesis that this parameter is relatively well identifiable (hypothesis 2) and 
confirming the importance of adding the slow reservoir for catchments with high 𝐴𝐴 𝐴𝐴B (hypothesis 1a).

By analyzing the UR storage dynamics, we found that the variability in UR storage was higher in the HIA class 
than in other classes (hypothesis 3). This result explains why this reservoir is particularly necessary in arid catch-
ments (hypothesis 1b). SR storage dynamics confirm a larger accumulation of water in the groundwater storage 
in catchments with a high baseflow index (hypothesis 4), which clarify the function of this storage in such condi-
tions, and its necessity (hypothesis 1a).

It should be noted that the relative performance between models (𝐴𝐴 Δ𝐹𝐹
(M𝑖𝑖𝑖M𝑗𝑗)

NS
 ) for simple and complex models was 

quite similar, indicating a correspondence between the element of the model and the hydrological process it repre-
sents. Our results provide increased evidence that the addition of complexity given by the number of parame-
ters being calibrated does not necessarily improve processes representation, as has been previously reported (de 
Boer-Euser et al., 2017; Fenicia et al., 2008, 2014; Orth et al., 2015; van Esse et al., 2013). Therefore, the correct 
representation of the dominant processes in each catchment is more important than the complexity of the model 
structure. Models MUF and MUFS, for instance, have the same number of parameters (i.e., 5), but their performance 
in baseflow-dominated catchments is quite different, with mean FNS close to zero for MUF and close to 0.60 for MUFS 
in LIA-HIB catchments. These results clearly show that the overall model architecture, and the processes that it is 
intended to represent, plays a more important role than merely the number of parameters in model performance.

6.  Conclusions
This study investigated the relationships between model structures and hydrological signatures in order to inter-
pret dominant hydrological processes at the catchment scale. To this end, we analyzed the performance of four 
different structures of conceptual hydrological models in 508 catchments located in Brazil. The use of such a 
large set of catchments provides the basis for robust generalizations.

•	 �There was a relatively clear correspondence between classes of signatures and hydrological model structures. 
In particular, wet catchments with low baseflow were the easiest to model, showing the highest performance 
of the single bucket model structure (FNS higher than 0.5 in 74.5% of the catchments). The addition of a 
groundwater reservoir was particularly impactful in catchments with high baseflow. Similarly, the addition of 
an unsaturated zone reservoir had a large influence in dry catchments.

•	 �A posteriori, the catchment classes defined based on model performance could be associated with landscape 
properties and the associated dominant processes. Catchments simulated well by a single bucket were charac-
terized by small soil depths and low permeability, whereas the need for a groundwater reservoir was evident 
in catchments with high permeability. This correspondence provides reassurance that suitable models are 
broadly representative of dominant catchment-scale processes.

•	 �Analyzing the correspondence between model parameters, internal states, and signatures on the most complex 
model structure, we found that the partitioning parameter D is strongly related to the baseflow index, whereas 
the variation in the storage of the unsaturated and slow reservoir can be associated with the aridity index 
and baseflow index, respectively. These relationships provide confidence that model components are broadly 
representative of the processes they are designed to represent.

These results lay out a path for a better understanding of the correspondence between model structures, hydro-
logical signatures, and landscape properties. Future work may reinforce the understanding of these connections 
through a larger sample of catchments, signatures, and model structures.
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Data Availability Statement
The hydrometeorological data used for catchment classification and hydrological modeling in the study are freely 
available at Chagas et al. (2020) via http://doi.org/10.5281/zenodo.3964745.
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